#https://colab.research.google.com/github/maticvl/dataHacker/blob/master/CNN/DataHacker_rs_%20YoloV3%20TF2.0.ipynb
#上記記事のコードを実行してみる
Prepare the colab notebook:
Tensorflow 2.0 is required
Choose TensorFlow 2.x in Colab using the method shown below
%tensorflow_version 2.x
Download the weights file
!wget https://pjreddie.com/media/files/yolov3.weights
Prepare the folder for storing the weights
!rm -rf checkpoints
!mkdir checkpoints
Import all required libraries
import cv2
import numpy as np
import tensorflow as tf
from absl import logging
from itertools import repeat
from google.colab.patches import cv2_imshow
from tensorflow.keras import Model
from tensorflow.keras.layers import Add, Concatenate, Lambda
from tensorflow.keras.layers import Conv2D, Input, LeakyReLU
from tensorflow.keras.layers import MaxPool2D, UpSampling2D, ZeroPadding2D
from tensorflow.keras.regularizers import l2
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.losses import sparse_categorical_crossentropy
print(tf.__version__)
Define some imporant value which we will use later
yolo_iou_threshold = 0.6 # iou threshold
yolo_score_threshold = 0.6 # score threshold
weightsyolov3 = 'yolov3.weights' # path to weights file
weights= 'checkpoints/yolov3.tf' # path to checkpoints file
size= 416 #resize images to\
checkpoints = 'checkpoints/yolov3.tf'
num_classes = 80 # number of classes in the model
List of layers in YOLOv3 FCN — Fully Convolutional Network
YOLO_V3_LAYERS = [
'yolo_darknet',
'yolo_conv_0',
'yolo_output_0',
'yolo_conv_1',
'yolo_output_1',
'yolo_conv_2',
'yolo_output_2',
]
Function to load weights from original Yolo trained model in Darknet
def load_darknet_weights(model, weights_file):
wf = open(weights_file, 'rb')
major, minor, revision, seen, _ = np.fromfile(wf, dtype=np.int32, count=5)
layers = YOLO_V3_LAYERS
for layer_name in layers:
sub_model = model.get_layer(layer_name)
for i, layer in enumerate(sub_model.layers):
if not layer.name.startswith('conv2d'):
continue
batch_norm = None
if i + 1 < len(sub_model.layers) and \
sub_model.layers[i + 1].name.startswith('batch_norm'):
batch_norm = sub_model.layers[i + 1]
logging.info("{}/{} {}".format(
sub_model.name, layer.name, 'bn' if batch_norm else 'bias'))
filters = layer.filters
size = layer.kernel_size[0]
in_dim = layer.input_shape[-1]
if batch_norm is None:
conv_bias = np.fromfile(wf, dtype=np.float32, count=filters)
else:
bn_weights = np.fromfile(
wf, dtype=np.float32, count=4 * filters)
bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]]
conv_shape = (filters, in_dim, size, size)
conv_weights = np.fromfile(
wf, dtype=np.float32, count=np.product(conv_shape))
conv_weights = conv_weights.reshape(
conv_shape).transpose([2, 3, 1, 0])
if batch_norm is None:
layer.set_weights([conv_weights, conv_bias])
else:
layer.set_weights([conv_weights])
batch_norm.set_weights(bn_weights)
assert len(wf.read()) == 0, 'failed to read all data'
wf.close()
Define function for calculating intersection over union
def interval_overlap(interval_1, interval_2):
x1, x2 = interval_1
x3, x4 = interval_2
if x3 < x1:
return 0 if x4 < x1 else (min(x2,x4) - x1)
else:
return 0 if x2 < x3 else (min(x2,x4) - x3)
def intersectionOverUnion(box1, box2):
intersect_w = interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax])
intersect_h = interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax])
intersect_area = intersect_w * intersect_h
w1, h1 = box1.xmax-box1.xmin, box1.ymax-box1.ymin
w2, h2 = box2.xmax-box2.xmin, box2.ymax-box2.ymin
union_area = w1*h1 + w2*h2 - intersect_area
return float(intersect_area) / union_area
Function for drawing bounding box, class name and probability
def draw_outputs(img, outputs, class_names):
boxes, score, classes, nums = outputs
boxes, score, classes, nums = boxes[0], score[0], classes[0], nums[0]
wh = np.flip(img.shape[0:2])
for i in range(nums):
x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2)
img = cv2.putText(img, '{} {:.4f}'.format(
class_names[int(classes[i])], score[i]),
x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
return img
Batch Normalization
class BatchNormalization(tf.keras.layers.BatchNormalization):
def call(self, x, training=False):
if training is None: training = tf.constant(False)
training = tf.logical_and(training, self.trainable)
return super().call(x, training)
Defining 3 anchor boxes for each grid
yolo_anchors = np.array([(10, 13), (16, 30), (33, 23), (30, 61), (62, 45),
(59, 119), (116, 90), (156, 198), (373, 326)], np.float32) / 416
yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]])
Darknet 53 – YOLOv3
Crate custom layers and model
def DarknetConv(x, filters, size, strides=1, batch_norm=True):
if strides == 1:
padding = 'same'
else:
x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding
padding = 'valid'
x = Conv2D(filters=filters, kernel_size=size,
strides=strides, padding=padding,
use_bias=not batch_norm, kernel_regularizer=l2(0.0005))(x)
if batch_norm:
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.1)(x)
return x
def DarknetResidual(x, filters):
previous = x
x = DarknetConv(x, filters // 2, 1)
x = DarknetConv(x, filters, 3)
x = Add()([previous , x])
return x
def DarknetBlock(x, filters, blocks):
x = DarknetConv(x, filters, 3, strides=2)
for _ in repeat(None, blocks):
x = DarknetResidual(x, filters)
return x
def Darknet(name=None):
x = inputs = Input([None, None, 3])
x = DarknetConv(x, 32, 3)
x = DarknetBlock(x, 64, 1)
x = DarknetBlock(x, 128, 2)
x = x_36 = DarknetBlock(x, 256, 8)
x = x_61 = DarknetBlock(x, 512, 8)
x = DarknetBlock(x, 1024, 4)
return tf.keras.Model(inputs, (x_36, x_61, x), name=name)
def YoloConv(filters, name=None):
def yolo_conv(x_in):
if isinstance(x_in, tuple):
inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:])
x, x_skip = inputs
x = DarknetConv(x, filters, 1)
x = UpSampling2D(2)(x)
x = Concatenate()([x, x_skip])
else:
x = inputs = Input(x_in.shape[1:])
x = DarknetConv(x, filters, 1)
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, filters, 1)
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, filters, 1)
return Model(inputs, x, name=name)(x_in)
return yolo_conv
def YoloOutput(filters, anchors, classes, name=None):
def yolo_output(x_in):
x = inputs = Input(x_in.shape[1:])
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, anchors * (classes + 5), 1, batch_norm=False)
x = Lambda(lambda x: tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2],
anchors, classes + 5)))(x)
return tf.keras.Model(inputs, x, name=name)(x_in)
return yolo_output
def yolo_boxes(pred, anchors, classes):
grid_size = tf.shape(pred)[1]
box_xy, box_wh, score, class_probs = tf.split(pred, (2, 2, 1, classes), axis=-1)
box_xy = tf.sigmoid(box_xy)
score = tf.sigmoid(score)
class_probs = tf.sigmoid(class_probs)
pred_box = tf.concat((box_xy, box_wh), axis=-1)
grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32)
box_wh = tf.exp(box_wh) * anchors
box_x1y1 = box_xy - box_wh / 2
box_x2y2 = box_xy + box_wh / 2
bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)
return bbox, score, class_probs, pred_box
Non-maximum suppression
def nonMaximumSuppression(outputs, anchors, masks, classes):
boxes, conf, out_type = [], [], []
for output in outputs:
boxes.append(tf.reshape(output[0], (tf.shape(output[0])[0], -1, tf.shape(output[0])[-1])))
conf.append(tf.reshape(output[1], (tf.shape(output[1])[0], -1, tf.shape(output[1])[-1])))
out_type.append(tf.reshape(output[2], (tf.shape(output[2])[0], -1, tf.shape(output[2])[-1])))
bbox = tf.concat(boxes, axis=1)
confidence = tf.concat(conf, axis=1)
class_probs = tf.concat(out_type, axis=1)
scores = confidence * class_probs
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(bbox, (tf.shape(bbox)[0], -1, 1, 4)),
scores=tf.reshape(
scores, (tf.shape(scores)[0], -1, tf.shape(scores)[-1])),
max_output_size_per_class=100,
max_total_size=100,
iou_threshold=yolo_iou_threshold,
score_threshold=yolo_score_threshold
)
return boxes, scores, classes, valid_detections
def YoloV3(size=None, channels=3, anchors=yolo_anchors,
masks=yolo_anchor_masks, classes=80, training=False):
x = inputs = Input([size, size, channels])
x_36, x_61, x = Darknet(name='yolo_darknet')(x)
x = YoloConv(512, name='yolo_conv_0')(x)
output_0 = YoloOutput(512, len(masks[0]), classes, name='yolo_output_0')(x)
x = YoloConv(256, name='yolo_conv_1')((x, x_61))
output_1 = YoloOutput(256, len(masks[1]), classes, name='yolo_output_1')(x)
x = YoloConv(128, name='yolo_conv_2')((x, x_36))
output_2 = YoloOutput(128, len(masks[2]), classes, name='yolo_output_2')(x)
if training:
return Model(inputs, (output_0, output_1, output_2), name='yolov3')
boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes),
name='yolo_boxes_0')(output_0)
boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes),
name='yolo_boxes_1')(output_1)
boxes_2 = Lambda(lambda x: yolo_boxes(x, anchors[masks[2]], classes),
name='yolo_boxes_2')(output_2)
outputs = Lambda(lambda x: nonMaximumSuppression(x, anchors, masks, classes),
name='nonMaximumSuppression')((boxes_0[:3], boxes_1[:3], boxes_2[:3]))
return Model(inputs, outputs, name='yolov3')
def YoloLoss(anchors, classes=80, ignore_thresh=0.5):
def yolo_loss(y_true, y_pred):
# 1. transform all pred outputs
# y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(
y_pred, anchors, classes)
pred_xy = pred_xywh[..., 0:2]
pred_wh = pred_xywh[..., 2:4]
# 2. transform all true outputs
# y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
true_box, true_obj, true_class_idx = tf.split(
y_true, (4, 1, 1), axis=-1)
true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
true_wh = true_box[..., 2:4] - true_box[..., 0:2]
# give higher weights to small boxes
box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]
# 3. inverting the pred box equations
grid_size = tf.shape(y_true)[1]
grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
true_xy = true_xy * tf.cast(grid_size, tf.float32) - \
tf.cast(grid, tf.float32)
true_wh = tf.math.log(true_wh / anchors)
true_wh = tf.where(tf.math.is_inf(true_wh),
tf.zeros_like(true_wh), true_wh)
# 4. calculate all masks
obj_mask = tf.squeeze(true_obj, -1)
# ignore false positive when iou is over threshold
true_box_flat = tf.boolean_mask(true_box, tf.cast(obj_mask, tf.bool))
best_iou = tf.reduce_max(broadcast_iou(
pred_box, true_box_flat), axis=-1)
ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)
# 5. calculate all losses
xy_loss = obj_mask * box_loss_scale * \
tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
wh_loss = obj_mask * box_loss_scale * \
tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
obj_loss = binary_crossentropy(true_obj, pred_obj)
obj_loss = obj_mask * obj_loss + \
(1 - obj_mask) * ignore_mask * obj_loss
# TODO: use binary_crossentropy instead
class_loss = obj_mask * sparse_categorical_crossentropy(
true_class_idx, pred_class)
# 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))
return xy_loss + wh_loss + obj_loss + class_loss
return yolo_loss
Function transform targets outputs tuple of shape
\begin{equation} ( [N, 13, 13, 3, 6],\\ [N, 26, 26, 3, 6],\\ [N, 52, 52, 3, 6] ) \end{equation}Where N is the number of labels in batch, and 6 represents \begin{equation}[x,y,w,h,obj,class]\end{equation} of the bounding boxes.
@tf.function
def transform_targets_for_output(y_true, grid_size, anchor_idxs, classes):
N = tf.shape(y_true)[0]
y_true_out = tf.zeros(
(N, grid_size, grid_size, tf.shape(anchor_idxs)[0], 6))
anchor_idxs = tf.cast(anchor_idxs, tf.int32)
indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True)
updates = tf.TensorArray(tf.float32, 1, dynamic_size=True)
idx = 0
for i in tf.range(N):
for j in tf.range(tf.shape(y_true)[1]):
if tf.equal(y_true[i][j][2], 0):
continue
anchor_eq = tf.equal(
anchor_idxs, tf.cast(y_true[i][j][5], tf.int32))
if tf.reduce_any(anchor_eq):
box = y_true[i][j][0:4]
box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2
anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32)
grid_xy = tf.cast(box_xy // (1/grid_size), tf.int32)
indexes = indexes.write(
idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]])
updates = updates.write(
idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]])
idx += 1
return tf.tensor_scatter_nd_update(
y_true_out, indexes.stack(), updates.stack())
def transform_targets(y_train, anchors, anchor_masks, classes):
outputs = []
grid_size = 13
anchors = tf.cast(anchors, tf.float32)
anchor_area = anchors[..., 0] * anchors[..., 1]
box_wh = y_train[..., 2:4] - y_train[..., 0:2]
box_wh = tf.tile(tf.expand_dims(box_wh, -2),
(1, 1, tf.shape(anchors)[0], 1))
box_area = box_wh[..., 0] * box_wh[..., 1]
intersection = tf.minimum(box_wh[..., 0], anchors[..., 0]) * \
tf.minimum(box_wh[..., 1], anchors[..., 1])
iou = intersection / (box_area + anchor_area - intersection)
anchor_idx = tf.cast(tf.argmax(iou, axis=-1), tf.float32)
anchor_idx = tf.expand_dims(anchor_idx, axis=-1)
y_train = tf.concat([y_train, anchor_idx], axis=-1)
for anchor_idxs in anchor_masks:
outputs.append(transform_targets_for_output(
y_train, grid_size, anchor_idxs, classes))
grid_size *= 2
return tuple(outputs) # [x, y, w, h, obj, class]
def preprocess_image(x_train, size):
return (tf.image.resize(x_train, (size, size))) / 255
Now we can create our model, load weights and class names. There is 80 of them in Coco dataset. Straight away we can go and test our model with some image.
yolo = YoloV3(classes=num_classes)
load_darknet_weights(yolo, weightsyolov3)
yolo.save_weights(checkpoints)
class_names = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck",
"boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana","apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut",
"cake","chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop",
"mouse","remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink",
"refrigerator","book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"]
# In order to test our object detection algorithm, we
# are going to upload some image from computer
# Other methods can be utilized, for example
# download from internet or google drive
from google.colab import files
image = files.upload()
image = list(image.keys())[0]
image = cv2.imread(image)
name = 'test.jpg' # path to test image
cv2.imwrite(name, image)
img = tf.image.decode_image(open(name, 'rb').read(), channels=3)
img = tf.expand_dims(img, 0)
img = preprocess_image(img, size)
boxes, scores, classes, nums = yolo(img) #eager mode
img = cv2.imread(name)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
cv2.imwrite('output.jpg', img)
cv2_imshow(img)